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Abstract—The heat transfer through a laminar dissociated boundary layer is examined using a defini-

tion for a variable heat of dissociation that permits a distinction between oxygen and nitrogen. The

results indicate that the heat transfer through an equilibrium boundary layer is somewhat less than

previously reported by other investigators. Furthermore, it is found for the range of free stream condi-

tions considered that oxygen recombination (rather than nitrogen) is the more dominant process for
determining heat transfer through an equilibrium boundary layer.

NOMENCLATURE
Cp|Cpw;
mass fraction of specie /;
specific heat per unit mass at constant
pressure of specie i, Btu/lb degR ;
weighted sum of specie specific heats,
Btu/lb degR ;
defined by equation (12)as a dimensionless
velocity variable;
enthalpy per unit mass of mixture,
Btu/Ib;
perfect gas enthalpy per unit mass of
specie i, cp T + u?/2, Btu/lb;
heat evolved in the formation of specie
i at 0°K per unit mass, Btu/lb;
superscript, equals —1 for axisymmetric
body; and -+1 for planar body;
thermal conductivity, Btu/s degR ft;
Lewis number for atom-molecule mix-
ture;
defined by equation (12);
Nusselt number;
Prandtl number, pép/k = 0-71;
heat flux, Btu/ft? s, kW/cm?;
cylindrical radius of body, ft;
Reynolds number;
universal gas constant;
superscript, equals 1 for axisymmetric
body and 0 for planar body;
absolute temperature, °R;

u, x component of velocity v, ft/s;

wi, mass rate of formation of specie i per unit
volume and time;

x, distance along surface from leading edge,
ft;

y, distance normal to surface, ft;

z, defined by equation (12), dimensionless
mass fraction,

Greek symbols

B, 2——~3 11;1 ?6, equals O for flat plate, and 1/2 for
stagnation point;

7, defined by equation (11);

0, defined by equation (12), dimensionless
temperature ;

A, defined as u./x for flat plate, and (du,/dx);
for stagnation point, s1;

g, absolute viscosity, slugs/ft s;

£, defined by equation (10);

p, mass density, slugs/ft3,

Subscripts

a, atom;

e, edge of boundary layer;

FE, equilibrium;

i, ith specie of mixture;

m, molecule;

n, nitrogen;

0, OXygen;
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s, stagnation conditions:
w,  wall;
o, free stream.

1. INTRODUCTION

THE first complete numerical solution of the
appropriate conservation equations which con-
sidered the actual dissociated state of equilibrium
air was that of Moore {1]. Hansen [2] pointed out
that Moore had miscalculated the Prandtl
number for dissociated air, and Romig and
Dore [3] carried out a similar analysis with a
corrected Prandtl number variation. However,
the authors employed equilibrium air properties
based on an old, incorrect value of the dissocia-
tion energy of nitrogen. Both the above solutions
arc valid only under the restriction that the
Lewis number is exactly [, and there is no way in
which the results can be extrapolated to the
case where . - 1. This follows from the faci
that with L - 1 the heat transfer is no longer
simply proportional to the enthalpy difference
across the boundary layer, but also involves the
extent to which the energy of dissociation con-
tained in the flow is transferred.

Stagnation point heat transfer in a dissociated
gas has been treated rather extensively by Fay
and Riddell [4], who included constant Lewis
numbers from | to 2, variable specific heat,
variable pp, constant Prandtl number, and
equilibrium and nonequilibrium flows: and by
Scala and Baulknight [5], who treated the prob-
lem in a manner similar to Fay and Riddell, but
also included wvariable Lewis and Prandtl
numbers plus thermal diffusion. Based upon
gross heat transfer to a stagnation point surface
for given environmental conditions, agreement
between [4] and [5] is within 10 per cent for
moderate altitudes. The boundary layer
characteristics for a dissociated flow over a flat
plate with L + 1 have not been treated although
Wilson [6] has obtained gross skin friction and
heating rates by an integral method where
diffusion effects were neglected.

It is believed that the most comprehensive
treatment of the dissociated air problem has been
that of [4] and [5]. in which the gas is considered
to be a binary mixture of air atoms and air
molecules. The primary constituents of air,
oxygen and nitrogen are quite similar insofar as
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transport properties (i.e. viscosity, thermal
conductivity, and diffusion) are concerned. Their
principle difference lies in the molecular binding
energies which are in the ratio of nearly 2 to !
(nitrogen: 9-76 ¢V and oxygen: 51 c¢V)
Therefore, air may reasonably be considered a
binary mixture insofar as transport propertics
are concerned but not in regard to chemicai
reaction, since equal amounts of heat will not be
released for every atom pair recombination in
contrast to the assumption of equal heat release
in [4] and [5]. Consequently, it is the purposc of
this paper to usc a variable heat of dissociation
that allows for the distinction between oxygen
and nitrogen, in order to obtain solutions tor the
laminar boundary layer at a stagnation poinl
and on a flat plate in dissociated air.

2. EQUATIONS OF MOTION
The equations of motion for the real gas
laminar boundary layer have been developed in
some detail in [4] and are given as*

(pru), {priy, {) i
U Cix - pU Ciy (f’[)i 'f'if/)u o3y {2
pv.grad h = (kT)), - uP, )

I Dipegfhy - 1)y (%)

where thermal diffusion has been neglected. If
as in [4].
e N alh - i)
grad Y ci(dhy/dT Yy grad T
- 2 {hy - he) grad ¢;
and
cp =Y ¢ (dhyydTy -
then the energy equation in combination with
(2) can be written in terms of the dependent
variable T as
(_'p(pllT,r ! PI'TJ/) T (kT;/,);u ulPy l’-(Ll;z/)2
== }_: Wy (/1“ e /?,j) }_: (/Ii - h?)(PDi('Zu)u
= [2 (/1; - /1;') pD;’ (’;‘_,,].,,. (4y
Considering /2 as constant results in the
energy equation of [4], namely,
prTy) = (kTy)y -+ uPr 4 pluy)?
f1i) —+ N Cpi Dip ciy T, (5

N i O

(.:p (pUT;( -
=X we (e

* Where D; = diffusion coefficient, subscripts x and »
denote partial derivatives, and P is the absolute pressure.
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for a gas at equilibrium. However, when hg is
considered to be a variable the energy equation
(4) becomes
Cp (puTz + pvTy) = (kTy)y + uPy
+ p (uy)® + X wilhg — hi)
+ 2 pDi ciy (cpi Ty — h5). (6)
If the local similarity concept is now em-

ployed as in [4] the equations of motion (1), (2)
and (6) become in dimensionless form

(NF,), -+ ffy + B ( f2) —0

NLz, 25 A1y
(), +
r/,

P Cie T =0 @

2 A wi(he — h
ll) + Cf, + E ‘_ﬂ(___?)
3 -
Nu?

NL c,
e 2 ﬁ__ﬂ
* Cpw Te fm’ * Z Prépy

(cpt 0, — h2,/Te) = 0. ©)

Where the binary mixture assumption has been
used to take advantage of the use of a single
diffusion coeflicient, and subscript » refers to
differentiation with respect to . Further,

¢(x) =

(CNO

{5 oo i e 128 dx, d€/dx = pyy pap he 775

(10)
and
7(x, y)
= [ue r* 28)}] [ p dy, On/By = rs pu, (22
(11)

The dimensionless dependent variables are
defined as follows:

f= 031, dn, 1, = ufu.

0 =1T1/T,
(12)
Z = ¢i/cie
N = pu/pw trw,
with
j=—1s5=1, A= (due/dx)s, B = 1/2

defining the stagnation point problem and
J=185=0,2=u/x, =0,
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the flat plate. Also, it is to be noted that in the
case of the stagnation point, the term
(Nufepw Te) f2, is small for high velocity flows
and can be neglected

3. METHOD OF ANALYTICAL SOLUTION
A. Equilibrium boundary layer

Complete thermodynamic equilibrium requires
that the gas properties and concentrations of
atoms and molecules be identical with their
equilibrium values appropriate to the local
temperature at every point of the flow. Here the
chemical reaction rates are considered very fast
relative to the rates of convection along stream-
lines or diffusion across streamlines. That is to
say that the recombination rate is sufficiently
large to maintain thermodynamic equilibrium.
Hence, the solution of the equilibrium boundary
layer is obtained by eliminating the term
27 A~ wy/p between equations (8) and (9) and
solving the resulting equation

'CN?o Cze(hz ho)
g ) .
( Pr )7/+ Cfeﬂ +Z Cpw pw Te

(55,2 v

+ Fr’E;w IZ Ci”((’pi 9” - h‘;n/Te) - 0 (13)
simultaneously with (7).

The equilibrium atom mass fractions are
taken from the tables of Logan and Traenor [7]
and are approximated at constant pressure by
an exponential of the form Cor = Cp, e>(1-119
where o is a constant. The Prandtl number was
assumed constant at 0-71, the Lewis number
was taken as a function of temperature and
density as determined by Hansen [8], and the
viscosity temperature relation was that of Penner
and Litvak as reported by Fay and Riddell [4].
In addition, the ratios p./p and ¢p/¢p, were
determined as in [4].

As previously mentioned, the binary mixture
assumption may not be valid insofar as chemical
reaction is concerned, since, nitrogen and oxygen
atoms will recombine to their equilibrium con-
centrations appropriate to their equilibrium
temperatures with a release in energy of 9-76 ¢V
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for n and 51 eV for o. Furthermore, as the
atoms diffuse towards the wall they first diffuse
into regions sufﬁciently cool to initiate nitrogen
recombination. From equilibrium mass fraction
tables it is observed that practically all the
nitrogen atoms will recombine before oxygen
recombination commences in the very cool
regions near the wall. This then allows the use
of atom mass fraction “c;” directly for the

dissociation energy term

he b2, cq < 0-2346
o O2346(—RY) I+ (ca —02346) (— )
o R T ST

(= 02346, (14)

A ot 1,

JJle equation was ubcu D_y UUuldrU 17} pui Ollly
at the equilibrium edge of a frozen boundary
layer. However, its use here is applied throughout
the entire boundary layer. Furthermore, equa-
tion (14) shows that below C(, == 0-2346 only
oxygen atoms will exist. This is not rigorously
correct but will be shown to be a valid approxi-
mation in a succeeding section. In addition, it
was also assumed that the term & ¢, /7, /T, in the
energy equa.tion would have a negligible contri-
bution since £ is zero until ¢, == 0-2346 while
¢, =0 quite rapldly near the edge of the
boundary layer. Also, N decreases with in-
creasing .

In order to compare the effect of the variable
heat of dissociation to previous solutions, the
method of Fay—-Riddell [4] with a variable Lewis
number and a constant heat of dissociation

24 Cie ( h”

o — atoms_

Y ocie

atoms
was obtained and hereafter noted as Method 1.
The solution obtained with both a variable
Lewis number and variable heat of dissociation
is then termed Method 2 (see Appendix A for

the method of machine soiution).

(15)

B. Frozen boundary layer
In the case of frozen flow, chemical reaction
rates are very slow compared to the diffusion

nta anvaca ctranm Hnag ¢ that na net mace rate
rate across siream 1nes sé uxu\. LIV LV 31AD0 iaw

of formation occurs (w; = 0). Furthermore,
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since there is no net mass rate of formation,
he will be constant at the value A% so that

/1” 1s zero. In addition, the atom concentratlon
is no longer a unique function of the temperature
and pressure so that an additional continuity
of species equation must be included. Hence.
equations (7-9) must be solved simultaneously.

C. Boundary conditions

The boundary conditions to be used with
equations (7-9) are df‘hendf_’nt on the state of
the externdl ﬂow and the wall temperature and
catalytic efficiency. The flow cases considered
here are the limits of equilibrium and fuily frozen
flows, Mach numbers from 10 to 24, with wall
temperatures from 300 to 1000°K, and wall
catalytic efficiencies from 0 to 100 per cent. Thus.
the boundary conditions are

S0 - 100) - 0. WY by Tl
floy == 1. by L
2(0) - 0. 05, 14
(o) i
4. HEAT TRANSFER

Ignoring radiation and ionization, heat is
transferred to a surface by molecular conduction
and atomic diffusion, the latter being inciuded
only when the atoms recombine at the wall. The
heat-transfer rate describing both such modes in
terms of the transformed co-ordinates is

f\"ll\\

B 1 2N > PUORS Saed i A3 B A NN
Gu [ACANAVEE

(/)M'Hw)l"‘ I
f! N Cae 1y Lw 2(0)) (16)

l ('[m T. 0 (O)J ’
where fi¢ is evaluated at the wall for equilibrium
flow and at the edge of the boundary layer for
frozen flow.

1t is also poOsS ¢ Nusgselt and Rey-

local co-ordinate x.

ible to defin
also possible to defir

nolds numbers based on the
Thus, defining

Nty == G XCpufkor (e -~ hu)
and

R()I(: P Ue A\./"IL/I‘Q
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the heat-transfer parameter at the wall may be
written as

[Nu/(Re)"*u
oy Cow Te 8,(0) [ cae Luw h3 2,(0)
= (0707 = — = oo T, 6,00) |

)
The parameters z,(0) and 6,(0) must now be
determined by solution of the boundary-layer
equations as discussed in the previous section.
The following sections discuss such solutions
under the various boundary and flow conditions
considered here.

5. RESULTS AND DISCUSSION

Solution of the equations of motion (7-9) for
the stagnation point and flat plate were obtained
using both the definitions of heat of dissociation
of Method 1 and 2. As would be expected, the
equilibrium heat-transfer rates of Method 2 are
significantly lower than those of Method 1 when
the degree of free stream dissociation is large;
however, for small amounts of free stream
dissociation, the two methods tend to yield the
same result.

A. Stagnation point characteristics

The machine solution of equations (7-9) with
B = 1/2 yield the distribution of 6, f,, and z
through the laminar boundary layer as a function
of ». Typical profiles of 6 and ¢, with recombina-
tion energies determined by both Methods 1 and

1-0

8
e}
@

Q
&

Dimensionless temperature,
o o
r H

| I L ! |
o 05 10 ] 20 2:5
Distance, 7

F1G. 1. Temperature distribution through a laminar
boundary layer at a stagnation point, altitude =
75 000 ft,
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2, are shown in Figs. 1 and 2 for equilibrium
and frozen flows at a stagnation point. Tables
containing pertinent parameters are shown in
Appendix B.

Referring to Fig. 2 it may be seen that the
equilibrium atom mass fraction obtained by
Method 1 is equal to the frozen atom mass
fraction at » = 1-1 let us select this point to
examine the equilibrium composition. The
machine solution reveals that at this value of
7, § = 0-7635. Equilibrium tables [7] show that
along a line of constant pressure appropriate to
the stipulated flight conditions of Fig. 2, the

05—

[

04 - Method I\

<
2
S 03 k
[s]
= \Method 2
2 0 kFrozen
o ~
£ / Mo=24
€ 7y 300°K
o0l |- 75 000ft,
<{
I i i
0 10 2:0 3-0

Distance, 17

FiG. 2. Atom mass fraction distribution through a
laminar boundary layer at a stagnation point,
altitude = 75 000 ft.

mole fraction of nitrogen atoms is almost an
order of magnitude lower than the mole fraction
of oxygen atoms. However, the Method 1
definition A2 calls for a recombination energy
at this point equivalent to that at the edge of the
boundary layer, but at the edge of the equilibrium
boundary layer the mole fraction of nitrogen
atom is actually greater than that of the oxygen
atom. The Method 1 definition of 42 then yields a
value which is dominated by the nitrogen bond
energy at » = 1-1 while for all practical pur-
poses only oxygen atoms exist from this point to
the wall and only the heat of formation of oxygen
should be released.

This paradox does not occur with the Method
2 solution. At 5 = 1-2, ¢; = 0-2346, according
to equation (11) all the nitrogen atoms will have
recombined and only oxygen atoms will be
left to recombine below this point. In reality,
the nitrogen cutoff point of ¢} = 0-2346 is not
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as abrupt as equation (l1) implies. Actually,
some nitrogen atoms exist below this point and
will be available for recombination. However,
there are so few that their contribution is not
felt. This has been shown by setting the nitrogen
cutoff point down to ¢ == 0-15 and observing
no significant changes (see Table 2).

In addition several cases were computed
inserting the term Nc, hi /T, [see equation
(13)]. In the most severe case considered, M., =
24, altitude = 75 000 ft, the correction amounted
to about a 7 per cent increase in the total heat
transfer rate and thus the approximation is
justified.

A further illustration of this difference has
been pointed out in [10] and may be seen in
Figs. 3 and 4, where the distribution of heat of

28

26
Equilibrium
oea 1 Method | stagnation poing
M=24
oo |- Tw=300°K
2.0 |-
18
Oxygen Oxygen+ Nitrogen
B3 A -
e
1&5? 14 -
a _Method 2
~on H
N i /73//735.\
S o o
3
&
08
-6
04
02

s} 2:0 30

F1G. 3. Normalized chemical reaction energy and heat

of dissociation distributions through a laminar

boundary layer at a stagnation point, altitude -
75 000 ft.

formation and the normalized energy due to
chemical reactions is plotted for the cases
My = 24, T, = 300°K, at 75 000 and 250 000 ft
altitudes.

Furthermore, Figs. 3 and 4 reveal that the
chemical energy available for heating is primarily
oxygen-controlled, as seen by the fact that the
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£:0
Method
Fquriibrium
stognation peint
3 M=
747 3009 <
3
x
(O
30
> Oxygen Dxyger+ Nitrogen
et - O o S S LA
- _Metnod 2
. |
S ISR A

Fit. 4. Normalized chemical reaction encrgy and

heat of dissociation distributions through a laminar

boundary layer at a stagnation point, altitude
250 000 ft.

chemical reaction energy term is essentially zero
at the point where the dissociation energy of
nitrogen becomes available and thereafter re-
mains small. This effect was observed for all
cases considered and is a rather surprising result.
since the nitrogen atom mass fraction for some
cases is greater than that of oxygen. However,
the nitrogen atoms recombine in the outer
regions of the boundary layer so that their con-
tribution to the chemical reaction energy term
is small.

At a much lower Mach number, M5 - 10, for
the same environmental conditions, the chemical
reaction energies for the two methods coincide.
as might be expected, since the definitions of
he of Methods 1 and 2 become identical (see
Fig. 5).

The values of 6,(0) and z,(0) obtained from
the solution of the equations of motion when
substituted into equation (17) yield values of
Nu/(Re)V2 for each Mach number, wall tempera-
ture, and altitude considered. These results are
plotted in Fig. 6 for both equilibrium and frozen
flow with z(0) = 0. Also shown in Fig. 6 is a
correlation curve obtained by a least-squares
fit of the points shown. These equations are
given for equilibrium and frozen flow respec-
tively, with z(0) = 0, by
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024
022 -
Method 1,2

020 7 erhed &
018 — Equilibrium

stagnation
0-16 — M=10

= °

o014 |- 7w=300°K

006 —
004
002 -
| | | i
0 ) 20 S——gg | 40

Y

FiG. 5. Normalized chemical reaction energy distribu-
tion through a laminar boundary layer at a stagnation
point, altitude = 75 000 ft.

[Nuf(Re)2), = 0-753 N5,
[Nuj(Re)/*,y = 0-603 NO'265,

(18)
(19)

Note that the equilibrium values for Method 2
are less than those obtained from the frozen
flow solutions, whereas the equilibrium results

0

09 =

08 [~
07 =

[

IS
B
X 03
3 07
=
0-2
O Frozen
o Method 2
——=L=1-4 ref. (4)
N
[ | | 1 I [
01 0-2 o3 04 05 06 0708 09 I.C

Ne

F1G. 6. Heat-transfer parameter, Nu/(Re)', vs. pu
ratio across a laminar boundary layer at a stagnation
point,
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equilibrium

/ - /'V
— ¢ 250 000ft

f1/s

Fiot| .
E & 200 000ft
e 150 Q00ft
o 75 000ft
T, = 300°K
orl il gl gl Ll
157% 167" 107 i [s]
g,  kw/ecm?

Fic. 7. Equilibrium stagnation point heat-transfer
rates (R = 1 ft) vs. flight velocity.

for Method 1 yield values that are approxi-
mately equal to the frozen flow case. The actual
heat-transfer rates to a body of 1-ft radius as
determined from the above for equilibrium flow
are shown in Fig. 7 as a function of flight
velocity and altitude. The heating-rate equations
obtained, using equations (18) and (19) are,
respectively,

Gu = 0753 Prt (pe )%

(P pao) =% (due/dx) 2 (he — ho), (20)
G = 0-603 Pr;1 (py e)02
(pw 1) % (dut/dx) /2 (he — ). 1)

B. Flat plate characteristics

Equations (7-9) with 8 = 0 and the appropri-
ate boundary conditions yield the distributions
of 8 and z through a laminar boundary layer on
a flat plate immersed in the uniform flow behind
a normal shock traveling at the selected Mach
numbers and altitudes.

Typical profiles of # and ¢, obtained by
Method 2 are shown in Figs. 8 and 9 for the
case Mo = 24, T,, = 300°K, altitude = 75 000ft
for both equilibrium and frozen flow. Fig. 10
shows the normalized chemical reaction energy
and heat of formation distributions for this case.
Trends shown here are the same as those
obtained from the stagnation point solution.

The heat transfer parameter Nu/(Re)V? is
shown as a function of the pu ratio in Fig. 11 for
both equilibrium and frozen flow with z(0) = 0.
Again, the results for all altitudes and Mach
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F16. 9. Atom mass fraction distribution through
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FiG. 10. Normalized chemical reaction energy and
heat of dissociation distribution through a laminar F1G. |1, Heat-transfer parameter, Nu/(Re)'/®, vs. pu

flat plate boundary layer Method, 2.

ratio across a laminar flat plate boundary layer.
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numbers considered were correlated by a least-
squares fit given as

[Nu/(Re)'3yy = 0-34 NO434 22)
for equilibrium flow and as
[Nu/(Re)'/%}, = 0-28 NO2% (23)

for frozen flow with z(0) = 0. The above
correlation yields the following heat-transfer
rate equations:

Guw = 0-34 Pr7t (pe i) 3%

(P p0)*" %48 (st X)V2 (he — huv) (24)
quw = 0-28 Prt (pe 1)
(P p120) 2% (tae] %)% (he — huw) @25

for equilibrium and frozen flows with z(0) = 0.
The heat-transfer rates at x = 1 ft for equilibrium
flow are illustrated in Fig. 12 as a function of
flight velocity and altitude. A summary curve of

10° b—
@ =
N =
- t Equitibrium
5 B .
8 | o
N ./
10* = ./
F o 75 000ft
[ e |50 000ft
- 4 200000 ft
250 000ft
- fy =300°K
167 U ISR T S S T IV T A S N Y
fon 107* 1072 107! 1
g kW/em?

FiG. 12. Equilibrium flat plate heat-transfer rates
(x = 1 ft) vs. flight velocity.

both the stagnation point and flat plate heat
transfer is shown in Fig. 13.

C. Comparison of results with existing experi-
mental data

A number of heat-transfer measurements have
been made at the stagnation point of models in
shock tubes and tunnels simulating a portion of
the range of flight conditions considered in this
study [11, 12, 13]. The experimental studies were,
in general, not carried out under the same
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— —_—Ll=tref. (4)
- / —-—Equilibrium 2
- —---—Frozen z (0)=0
/ ——~Equilibrium |
//
I 1 ! N N !
0-1 02 03 >4 Q5 06 07 0809 10
Ne
Fic. 13. Heat-transfer parameter, Nu/(Re)'?,
vs. pu ratio.

velocity and pressure conditions, so that a direct
comparison of experimental results is difficult.
However, the experimental results available in
the literature reveal a scatter of sufficient latitude
to encompass the predictions of both Methods 1
and 2 at least through Mach numbers as high as
12 and altitudes up to 75 000 ft.

At low velocities (<<13 000 ft/s) the data of
[12] agree reasonably well with the Method 2
results, but at higher velocities (13 000-26 000
ft/s) the data of [11] clearly favor the results of
Method 1.

6. CONCLUSIONS

The heat-transfer rates, considering variable
Lewis number and variable heat of recombina-
tion at a stagnation point in equilibrium and
frozen flows, may be given by

quw = 0753 Pr; 1 (pe pe) 3%
(Pw ,u,w)—o'095 (due/dx)}/z (he — hy)
G = 0-603 Pr; ! (pe pe)? 265
(Pw ‘uw)o.zss (due/dx)jm (he —_ hw)

whereas the flat plate heat-transfer rates for the
two cases are
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Gro — 034 Pr ' (pe jue) ¥

(PH' l“'”.)()'()l(; (l’l(’/-\‘)l 2 (/1(5 /lu‘)
G — 028 Pr 2 (peee) 2
(P )2 295 (20,32 (o - i)

respectively. These results indicate that in the
equilibrium case the external flow properties
are the dominant influence determining heat
transfer, as was found by previous investigators.
In the case of completely frozen flow, however,
the wall conditions are at least as important as
the external flow conditions.

Using a variable heat of formation which
allows for a distinction between oxygen and
nitrogen recombination, gives results that are
physically reasonable but somewhat lower than
the equilibrium heat-transfer rates given by Fay
and Riddell [4] and by Scala and Baulknight [35],
but still within the experimental data scatter of
[11], [12] and [13].

Hayes and Probstein [14] have summarized
the effect of recombination of atoms on the
heat transfer in a laminar boundary layer where
the gas is a binary mixture of air atoms and
molecules with Lewis number identically 1.
Their primary conclusion is that it makes little
difference upon heat transfer, whether the atoms
recombine in the boundary layer or at the wall,
which implies that all air atoms transfer equal
amounts of recombination energy. However, air
is more realistically a quaternary mixture and the
oxygen and nitrogen atoms transport different
amounts of recombination energy. The definition
used here for a variable heat of formation in
part accounts for this multiplicity of components
in that almost all nitrogen atoms will recombine
before oxygen recombination commences. Con-
sequently, the equilibrium heat-transfer rates
are lower than those of [4]. However, the frozen
flow heat-transfer rates are essentially the same
as those in [4], since atoms recombine only at
the wall.

A particularly interesting consequence of the
above definition of the heat of atom formation
is the dominant effect of oxygen recombination
occurring in the vicinity of the wall.
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APPENDIX A
Method of machine solution
Evaluating equations (7-9) in terms of &
binary mixture of air atoms and air molecules
results in the following sets of equations:
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Equilibrium Flow
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where primes denote differentiation with respect
to 7.

Solution of the equations would have been
very straightforward except for the fact that
certain of the initial conditions were not known
and had to be obtained as part of the solution.
This was accomplished by an iterative procedure
which will be described below.

Given the necessary tabular data and flight
conditions, the solution began by assuming a
set of values for the unknown initial conditions,
f7(0), #(0), and Z'(0). If several cases were
being computed consecutively, the guessed values
were the values obtained in the previous solu-
tion. For the first case of any group, an arbitrary
set of numbers was used which had been found
to work satisfactorily in many cases. The equa-
tions were then integrated by means of Milne’s
method until a value of /() was obtained such
that f"(n) < .

This value for f’() meant that f'(n) was
either approaching a horizontal asymptote or a
maximum point. At this point integration was
stopped, and the values of the functions com-
pared with the required boundary conditions.
If all conditions were met, it was assumed that
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the solution had been obtained. If any boundary
condition was not satisfied, corrections were
made to the initial conditions and a new itera-
tion begun.

For the sake of simplicity, the method used to
make corrections to the unknown initial condi-
tions will be described oniy for the case of
equilibrium flow. The extension to more than
two functions is quite simple.

Corrections to f’(0) and 6'(0) are obtained
from the equations

GV () BN ,
0600\ ooy L 00D o

where Af”(0) and A#’(0) are the desired correc-
tions and f“(y) and 6’(n) are the values obtained
using the previous approximations to the true
values of the initial conditions. The partial
derivatives were approximated by doing three
initial iterations, the first one being the refer-
ence. For the second iteration f(0) was incre-
mented by an amount 3f”’(0) while 6’(0) re-
mained fixed. Integration of the equations then
resulted in new values for f'(y) and 6(n) which
differed from those of the first iteration by
amounts 8'f(n) and 86(»), respectively. Then,

o) _ @)
o0 ~ 5 0)

and

o) _ %00
&) ~ & Oy

For the third iteration, f/(0) was reset to its
value at the first iteration and 6’(0) incremented
by an amount 86°(0). The partials with respect
to 6(0) were then computed in the same manner.

Validity of the solutions rests on the fact that
all the boundary conditions are satisfied, and
that decreasing the interval of integration does
not change the results significantly. Uniqueness
is indicated by the fact that different guesses at
the unknown initial conditions always results in
the same final solution.
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APPENDIX B
Table 1. Method. |. Equilibritm boundary luver

M Altf T o Ne Chp i '/'77) (0)

10 5K 300°K  0-0928 0-4226 0-023 8-896 0-4778 0-4016
14 150K 600°K 01184 0-3298 0-237 2371 0-4543 0-6345
20 200K  1000°K  0-1698 0-2896 04712 2212 0-451 0-8781
24 75K 300°K. 0-03661 0-1701 0-495 2227 0-3419 0-7105
24 250K 300°K  0-0552 0-1971 0-507 2-245 0-3716 0-9837
20 75K 300°K 0042 0-2159 0-3275 2:360 0-2802 0-6042
10 150K  1000°K  0-3065 0-5543 0-095 7913 0-3936 0-4212
24 250K 300°K 0-2757 0-1971 0-5069 2-245 0-2757 0-932

Tuble 2. Method 2. Fquilibrium boundary layer

M Alt. T i N, Cue co* @ fvm 0 H” (0
10 75K  300°K 0-0928 04226 0023 02346 8896 (04765 0-3955
14 150K  600°K 0-1184 0-3298 0-237 02346 2-371 0-4519 0-5637
20 200K 1000°K 0-1698 02896 0-4712 02346 2-212  0-448] 0-6397
24 75K  300°K 003661 0-1701 0-495 0-2346 2227 0-3384 0-5480
24 250K  300°K 0-0552 0-1971 0-507 02346 2:245  0-368 0-7049
20 75K  300°K 0042 02159 0-3275 0-2346 2360 0285 0-499

10 150K 1000°K 0-3065 0-5543 0095 02346 7913 0394 04151
24 250K  300°K 0-2757 01971 0-5069 02346 2245 02814 06775
24 75K  300°K 003661 0-1701 0495 0-200 2245 03384 0-5474
24 75K 300°K 0-03661 0-1701 (0495 0170 2245  0-3384 0-5474
24 75K 300°K  0-03661 0-1701 0495  0-150 2245 0-3384 0-5478

M Al T 8. N Cue Ly (0) 8, (0) 7,0 z(0)
10 250K 600°K 02469 0-5547 00433 05672 03229 03607 0
20 200K 300°K  0-0509 0-1987 0-4712 03425 03245 02519 O
14 150K 1000°K 0-1973 0-3955 02370 04845 03026 03137 0
24 75K 300°K 003661 0-1701 0495 03181 03126 02405 0
20 75K 300°K 0042 02159 0-3275 02873 03167 02523 O
10 250K 600°K 02469 0-5547 0-0433  0-3957 03067  0-338 0
14 200K 1000°K 02217 0417 02264 03686 02861 03016 O
24 150K 300°K  0-0403 0-1416 0-7385  0-2607 03025 02186 0

t The nomenclature 75 K, etc. designates 75 000 ft.

0,10)  Nuiv/(Re)

0-4288

05
04417 03
04623 05
03499 05
0-3854 05
01782 O
0-2437 O
01826 0O
Nulvy/'(Re) 3
0-4278 05
0-435 05
0-3368 0-5
0-2754 05
0-2761 05
0-1471 0
0-2402 ]
0-1317 0
0-2754 05
0-2754 o5
0-2756 03
Nuj+/(Re) 3
0-496 0-35
0-3851 0-5
0-4533 0-5
0-3631 0-5
0-1868 0
0-2348 0
0-2366 [\]
0:1704 0
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Résumé—On étudie I’échange thermique a travers une couche limite laminaire dissociée en utilisant
une définition de la chaleur de dissociation variable permettant de faire une distinction entre I’oxy-
gene et 'azote. Les résultats indiquent que la transmission de chaleur & travers une couche limite en
équilibre est und peu moins grande que celle rapportée précédemment par d’autres auteurs. De plus,
on trouve que, pour les conditions d’écoulement libre considérées, la recombinaison de Poxygéne
(plutét que celle de P'azote) est le phénoméne prédominant dans la détermination de I’échange

thermique a travers une couche limite en équilibre.
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Zusammenfassung—Der Wirmeiibergang durch eine dissoziierte laminaire Grenzschicht wurde

untersucht unter Beniitzung verdnderlicher Dissoziationswirmen, was eine Unterscheidung zwischen

Sauerstoff und Stickstoff erméglichte. Die Ergebnisse deuten darauf hin, dass der Warmetlibergang

durch eine Gleichgewichtsgrenzschicht hier etwas unter dem kiirzlich von anderen Forschern mit-

geteilten liegt. Weiterhin wurde fiir den Bereich der betrachteten Freistromverhiltnisse festgestelit,

dass die Sauerstoffrekombination (eher als die des Stickstoffs) fiir die Bestimmung des Warmeiiber-
gangs durch eine Gleichgewichtsgrenzschicht die dominierende Rolle spielt.

Anporamua—lccnenyerca Temoo6Men 4Yepe3 MHCCONMUPOBAHHBIN JIaMHHAPHEIL moTpa-
HUYHBIA CJIOW, UCIIOJIB3Y A MOHATHE O IMIEPEMEHHOM TeNI0Te AUCCOLHUAIMM, YTO II03BOJIAET IPO-
BOJUTE pasinyMe MeKAY KUCIOPOJOM M a30TOM. PesynabTaThl MOKABHIBAIOT, YTO TENJIO0OMEH
4epes PABHOBECHHIH IOIPAHUYHBIA CJI0M HECKOJNBKO MEHBINE, YeéM YKashBalOCh B paHee
ony0JIMKOBAaHHBIX pafoTax ApYTHX HccaefoBarenelt. Kpome Toro ycTaHOBIEHO, YTO B paccMa-
TPHBAEMBAEMBIX YCIOBHUAX CBOGONHOrO TeYeHHMA peHOMOMHALMA KHUCIOpoja (CKopee, YeM
a30Ta) ABJIAETCH ONpPeeNAIINM IPOLECCOM IPH TermIoo6MeHe Yyepes paBHOBECHEL OTPAHNY-
HBI CJIO¥.
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