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Abstract-The heat transfer through a laminar dissociated boundary layer is examined using a defini- 
tion for a variable heat of dissociation that permits a distinction between oxygen and nitrogen. The 
results indicate that the heat transfer through an equilibrium boundary layer is somewhat less than 
previously reported by other investigators. Furthermore, it is found for the range of free stream condi- 
tions considered that oxygen recombination (rather than nitrogen) is the more dominant process for 

determining heat transfer through an equilibrium boundary layer. 

NOMENCLATURE 

~pl&w ; 
mass fraction of specie i; 
specific heat per unit mass at constant 
pressure of specie i, Btu/lb degR; 
weighted sum of specie specific heats, 
Btu/lb degR; 
defmed by equation (12) as a dimensionless 
velocity variable ; 
enthalpy per unit mass of mixture, 
Btu/lb; 
perfect gas enthalpy per unit mass of 
specie i, cpr T + u2/2, Btu/lb; 
heat evolved in the formation of specie 
i at 0°K per unit mass, Btu/lb; 
superscript, equals - 1 for axisymmetric 
body; and + 1 for planar body; 
thermal conductivity, Btu/s degR ft ; 
Lewis number for atom-molecule mix- 
ture ; 
defined by equation (12) ; 
Nusselt number ; 
Prandtl number, &/k = 0.71; 
heat flux, Btu/ft2 s, kW/cm2; 
cylindrical radius of body, ft; 
Reynolds number; 
universal gas constant; 
superscript, equals 1 for axisymmetric 
body and 0 for planar body; 
absolute temperature, “R; 

24, x component of velocity v, ft/s ; 
w#, mass rate of formation of specie i per unit 

volume and time ; 
x, distance along surface from leading edge, 

ft; 

Y, distance normal to surface, ft; 

=, defined by equation (12), dimensionless 
mass fraction, 

Greek symbols 

8, 
id In ue 

my 
equals 0 for flat plate, and l/2 for 

stagnation point ; 
7, defined by equation (11) ; 
0, defined by equation (12), dimensionless 

temperature ; 
A, defined as ue/x for flat plate, and (due/d& 

for stagnation point, s-l; 
p, absolute viscosity, slugs/ft s; 
5, defined by equation (10); 
p, mass density, slugs/ft3. 

Subscripts 

a, atom; 

e, edge of boundary layer; 
E, equilibrium; 
i, ith specie of mixture ; 
m, molecule ; 
4 nitrogen; 

0, oxygen ; 

H.M.-3Y 
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s. stagnation conditions : 
II’. wall ; 
x, free stream. 

1. INTRODUCTION 

THE first complete numerical solution of the 
appropriate conservation equations which con- 
sidered the actual dissociated state of equilibrium 
air was that of Moore [I]. Hansen [2] pointed out 
that Moore had miscalculated the Prandtl 
number for dissociated air. and Romig and 
Dore [3] carried out a similar analysis with a 
corrected Prandtl number variation. Hoivever, 
the authors employed equilibrium air properties 
based on an old, incorrect value of the dissocia- 
tion energy of nitrogen. Both the above solutions 
are valid only under the restriction that the 
Lewis number is exactly I, and there is no way in 
which the results can be extrapolated to the 
case where I_ -: 1. This follows from the fact 
that with II :f I the heat transfer is no longer 
simply proportional to the enthalpy difference 
across the boundary layer, but also involves the 
extent to which the energy of dissociation con- 
tained in the flow is transferred. 

Stagnation point heat transfer in a dissociated 
gas has been treated rather extensively by Fay 
and Riddell [4], who included constant Lewis 
numbers from 1 to 2, variable specific heat. 
variable ,I/‘, constant Prandtl number, and 
equilibrium and nonequilibrium flows: and by 
Scala and Baulknight [5]. who treated the prob- 
lem in a manner similar to Fay and Riddell, but 
also included variable Lewis and Prandtl 
numbers plus thermal diffusion. Based LLPOII 

gross heat transfer to a stagnation point surface 
for given environmental conditions, agreement 
between [4] and [5] is within 10 per CeJlt for 
moderate altitudes. The boundary layer 
characteristics for a dissociated flow over a flat 
plate with L -/ 1 have not been treated although 
Wilson [6] has obtained gross skin friction and 
heating rates by an integral method where 
diffusion effects were neglected. 

It is believed that the most comprehensive 
treatment of the dissociated air problem has been 
that of [4] and [5]. in which the gas is considered 
to be a binary mixture of air atoms and air 
molecules. The primary constituents of air, 
oxygen and nitrogen are quite similar insofar as 

transport properties (i.e. viscosity, thermal 
conductivity, and diffusion) arc concerned, Their 
principle difference lies in the molecular binding 
energies which are in the ratio of nearly 2 ((1 1 
(nitrogen : 9.76 cV and oxygen : S. 1 CY ! 
Therefore, air may reasonably be considered ;I 
binary mixture insofar as transport properties 
are concerned but not in reward to i,hen~ic;ti 
reaction, since equal amounts of heat will not he 
released for every atom pair rccombinati!in ir: 
contrast to the assumption of equal heat rclensr 
in [4] and [5]. Consequently. it is the purpose 01 
this paper to use a variable heat of dissoci:iGc’t! 
that allows for the distinction betv+een oxqger~ 
and nitrogen, in order to obtain solutions for the 
laminar boundary layer at a stagnation p~~!nl 
and on a flat plate in dissociated air. 

2. EQUATIONS OF WlO’I’IO?i 

nle equations of motion IOI- the 1X;il pas 

laminar boundary layer have been devclopcd in 
come detail in [4] and are given a\‘!: 

(+).I (W’l j/j 0 r1’i 

pII (‘i.c i {Jr’ (‘is; (PI), "i,ffJcj iI ; i 7 ) 

pv grad /I (/CT!,),, Ld’,, iL(l!i,)2 

12 0; j> <‘;y(hi /y i]t, c z ) 

whcrc thermal difrusion has been neglcctcd. II‘ 
as in 141. 

h y c’i(/li /P) 

grad 11 2 ci(dhi/dT) grad 7 

x (/Ii h;) grad ci 
and 

~‘1, E x ci (dhi;dT) 2; i’i (’ /I’ 

then the energy equation in combination with 
(2) can be written in terms of the dependent 
variable T as 

F~( putt 1 prTl,) (/<T,,)], I 1dP.r , {L(Li,f,)‘i 

_~ “ II’/ (11) Ifi) 

; k (/?; hy) pDr ~?g? 

I?;‘) (fJLk;,,)r, 

(4) 

Considering 11; as constant results in the 
energy equation of [4], namely, 

(:?, (p147, -’ prTj1) (k7,), I- UP,r i /L(U,)” 
:_ It; Il’i (II:’ l/i) 7. x l’p,i I_li/T Cjg T;, (5) 

* Where D, ~=~ diffusion coefficient, subscripts ,! and I 
denote partial derivntives, and P is the absolute prcssurc 
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for a gas at equilibrium. However, when hz is 
considered to be a variable the energy equation 
(4) becomes 

& (PUT55 + PVTU) = (kG)1/ + up, 

+ /J (Q)” + zl J+%(hp - hi) 

+ C pDi ciy (cpz Ty - &,). (6) 

If the local similarity concept is now em- 
ployed as in 141 the equations of motion (I), (2) 

the flat plate. Also, it is to be noted that in the 
case of the stagnation point, the term 
(Nu,Z/& Te) f,‘, is small for high velocity flows 
and can be neglected. 

3. METHOD OF ANALYTICAL SOLUTION 

A. Equilibrium boundary layer 

and (6) become in dimensionless form 

Complete thermodynamic equilibrium requires 
that the gas properties and concentrations of 
atoms and molecules be identical with their 
equilibrium values appropriate to the local 
temperature at every point of the flow. Here the 
chemical reaction rates are considered very fast 
relative to the rates of convection along stream- 
lines or diffusion across streamlines. That is to 
say that the recombination rate is sufficiently 
large to maintain thermodynamic equilibrium. 
Hence, the solution of the equilibrium boundary 
layer is obtained by eliminating the term 
2f h-l wJp between equations (8) and (9) and 
solving the resulting equation 

(7) 

(8) 

(9) 

Where the binary mixture assumption has been 
used to take advantage of the use of a single 
diffusion coefficient, and subscript 7 refers to 
differentiation with respect to 17. Further, 

t(x) = SE pwpy,uer ‘s dx, d f/dx = pw pw ue 98; 

(10) 
and 

70, Y) 
= [ue r” (2@] J$ p dY, +/aY = rs pu, (2Q1’2. 

(11) 

The dimensionless dependent variables are 
defined as follows: 

0 = T/T, 

z = CilCie 

with 
N = PPIP~O ww, J 

j = -1, s = 1, h = (due/dx)s, j3 = l/2 

defining the stagnation point problem and 

j= l,s=O, h=ue/x,/3=0, 

NL 
(13) 

simultaneously with (7). 
The equilibrium atom mass fractions are 

taken from the tables of Logan and Traenor [7] 
and are approximated at constant pressure by 
an exponential of the form CaE = C,, ea(l-llo) 
where a is a constant. The Prandtl number was 
assumed constant at 0.71, the Lewis number 
was taken as a function of temperature and 
density as determined by Hansen [8], and the 
viscosity temperature relation was that of Penner 
and Litvak as reported by Fay and Riddell [4]. 
In addition, the ratios pe/p and ?pplFpw were 
determined as in [4]. 

As previously mentioned, the binary mixture 
assumption may not be valid insofar as chemical 
reaction is concerned, since, nitrogen and oxygen 
atoms will recombine to their equilibrium con- 
centrations appropriate to their equilibrium 
temperatures with a release in energy of 9.76 eV 
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for II and 5.1 eV for o. Furthermore, as the 
atoms diffuse towards the wall they first diffuse 
into regions sufficiently cool to initiate nitrogen 
recombination. From equilibrium mass fraction 
tables it is observed that practically all the 
nitrogen atoms will recombine before oxygen 
recombination commences in the very cool 
regions near the wall. This then allows the use 
of atom mass fraction “ c a” directly for the 
dissociation energy term 

h: -= h;, ca d: 0.2346 

-0.2346) (-hz) 
, 

c’,t 2 O-2346. (14) 

This equation was used by Goulard [9] but only 
at the equilibrium edge of a frozen boundary 
layer. However, its use here is applied throughout 
the entire boundary layer. Furthermore, equa- 
tion (14) shows that below CC, : 0.2346 only 
oxygen atoms will exist. This is not rigorously 
correct but will be shown to be a valid approxi- 
mation in a succeeding section. In addition, it 
was also assumed that the term N cii), h&/7; in the 
energy equation bvould have a neghgible contri- 
bution since Jz;,, is zero until cn := 0.2346 while 
cil --+ 0 quite rapidly near the edge of the 
boundary layer. Also, N decreases with in- 
creasing 7. 

In order to compare the effect of the variable 
heat of dissociation to previous solutions, the 
method of Fay-Riddell [4] with a variable Lewis 
number and a constant heat of dissociation 

was obtained and hereafter noted as Method I. 
The solution obtained with both a variable 
Lewis number and variable heat of dissociation 
is then termed Method 2 (see Appendix A for 
the method of machine solution). 

B. Frozen boundary layer 
In the case of frozen flow, chemical reaction 

rates are very slow compared to the diffusion 
rate across stream lines so that no net mass rate 
of formation occurs (~5 = 0). Furthermore, 

since there is no net mass rate of formation, 
/7; will be constant at the value I?;; so that 
(1;) is zero. In addition, the atom concentration 
is no longer a unique function of the temperature 
and pressure so that an additional continuity, 
of species equation must be included. Hence. 
equations (7-9) must be solved simultaneously. 

C‘. Boundary conditions 
The boundary conditions to be used with 

equations (7-9) arc dependent on the state of 
the external flow and the wall temperature and 
catalytic efficiency. The flow cases considered 
here are the limits of equilibrium and fully frorcn 
Aous. Mach numbers from 10 to 24, with \vall 
temperatures from 300 to 1000 ‘K, and \\~ill 
catalytic efficiencies from 0 to 100 per cent. Thu\. 
the boundary conditions are 

,lW) r;,(O) 0, r-l(O) t’,, T,,,: 7 ‘l. 

.f& CL) :--- 1 , f&T) 1. 

z(O) 0. 0.5. I .o. 

Z(Z) 1. 

4. HEAT TRANSFER 

Ignoring radiation and ionization, heat is 
transferred to a surface by molecular conduction 
and atomic diffusion, the latter being included 
only when the atoms recombine at the wall. The 
heat-transfer rate describing both such modes in 
terms of the transformed co-ordinates is 

where /z; is evaluated at the wall for equilibrium 
flow and at the edge of the boundary layer foi 
frozen flow. 

It is also possible to define Nusselt and Kcy- 
nolds numbers based on the local co-ordinate .\-. 
Thus. defining 

and 
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the heat-transfer parameter at the wall may be 
written as 

[Nu/(Re)V w 

(17) 
The parameters z,(O) and e,(O) must now be 
determined by solution of the boundary-layer 
equations as discussed in the previous section. 
The following sections discuss such solutions 
under the various boundary and flow conditions 
considered here. 

5. RESULTS AND DISCUSSION 

Solution of the equations of motion (7-9) for 
the stagnation point and flat plate were obtained 
using both the definitions of heat of dissociation 
of Method 1 and 2. As would be expected, the 
equilibrium heat-transfer rates of Method 2 are 
significantly lower than those of Method 1 when 
the degree of free stream dissociation is large; 
however, for small amounts of free stream 
dissociation, the two methods tend to yield the 
same result. 

A. Stagnation point characteristics 
The machine solution of equations (7-9) with 

/3 = l/2 yield the distribution of 8, &, and z 
through the laminar boundary layer as a function 
of 7. Typical profiles of 0 and ca with recombina- 
tion energies determined by both Methods 1 and 

0.5 I .o I .5 2.0 2.5 

Distance, 7) 

FIG. 1. Temperature distribution through a laminar 
boundary layer at a stagnation point, altitude = 

75 ooo ft. 

2, are shown in Figs. 1 and 2 for equilibrium 
and frozen flows at a stagnation point. Tables 
containing pertinent parameters are shown in 
Appendix B . 

Referring to Fig. 2 it may be seen that the 
equilibrium atom mass fraction obtained by 
Method 1 is equal to the frozen atom mass 
fraction at 7 = 1-l let us select this point to 
examine the equilibrium composition. The 
machine solution reveals that at this value of 
7, 0 = 0.7635. Equilibrium tables [7] show that 
along a line of constant pressure appropriate to 
the stipulated flight conditions of Fig. 2, the 

Mm=24 
T, =300”K 
75 oooft. 

I 
0 I.0 2.0 3.0 

Distance, 7 

FIG. 2. Atom mass fraction distribution through a 
laminar boundary layer at a stagnation point, 

altitude = 75 000 ft. 

mole fraction of nitrogen atoms is almost an 
order of magnitude lower than the mole fraction 
of oxygen atoms. However, the Method 1 
definition h”, calls for a recombination energy 
at this point equivalent to that at the edge of the 
boundary layer, but at the edge of the equilibrium 
boundary layer the mole fraction of nitrogen 
atom is actually greater than that of the oxygen 
atom. The Method 1 definition of h,o then yields a 
value which is dominated by the nitrogen bond 
energy at 7 = 1.1 while for all practical pur- 
poses only oxygen atoms exist from this point to 
the wall and only the heat of formation of oxygen 
should be released. 

This paradox does not occur with the Method 
2 solution. At 7 = 1.2, ca = 0.2346, according 
to equation (11) all the nitrogen atoms will have 
recombined and only oxygen atoms will be 
left to recombine below this point. In reality, 
the nitrogen cutoff point of c,* = O-2346 is not 
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as abrupt as equation (1 I) implies. Actually, 
some nitrogen atoms exist below this point and 
will be available for recombination. However. 
there are so few that their contribution is not 
felt. This has been shown by setting the nitrogen 
cutoff point down to cc: : 0. I5 and observing 
no significant changes (see Table 2). 

In addition several cases were computed 
inserting the term NC;,] h;:,/Ttz [see equation 
(13)]. In the most severe case considered, .&I, 
24, altitude 75 000 ft, the correction amounted 
to about a 7 per cent increase in the total heat 
transfer rate and thus the approximation is 
justified. 

A further illustration of this difierence has 
been pointed out in [lo] and may be seen in 
Figs. 3 and 4, where the distribution of heat of 

“3 FIG,. 4. Normalized chemical rcactwn encrgq and 
heat of dissociation distributions through a laminar 
boundary layer at a stagnation point. altitude 

750 000 ft. 

2’6 

Method I 

FIG. 3. Normalized chemical reaction energy and heat 
of dissociation distributions through a laminar 
boundary layer at a stagnation point, altitude ~ 

75 000 ft. 

formation and the normalized energy due to 
chemical reactions is plotted for the cases 
M, = 24, T,,, = 300”K, at 75 000 and 250 000 ft 
altitudes. 

Furthermore. Figs. 3 and 4 reveal that the 
chemical energy available for heating is primarily 
oxygen-controlled, as seen by the fact that the 

cif , 

chemical reaction energy term is essentially zero 
at the point where the dissociation energy of 
nitrogen becomes available and thereafter re- 
mains small. This effect was observed for all 
cases considered and is a rather surprising result. 
since the nitrogen atom mass fraction for some 
cases is greater than that of oxygen. Howcvur, 
the nitrogen atoms recombine in the outer 
regions of the boundary layer so that their con- 
tribution to the chemical reaction energy term 
is small. 

At a much lower Mach number, IV, IO, ii1 
the same environmental conditions. the chemical 
reaction energies for the two methods coincide. 
as might be expected, since the definitions of 
11;; of Methods 1 and 2 become identical (WC 
Fig. 5). 

The values of 0,(O) and z,,(O) obtained from 
the solution of the equations of motion when 
substituted into equation (17) yield values of- 

Nu/(Rc)~~~ for each Mach number. wall tempera- 
ture, and altitude considered. These results arc 
plotted in Fig. 6 for both equilibrium and frozen 
flow with $0) = 0. Also shown in Fig. 6 is a 
correlation curve obtained by a least-squares 
fit of the points shown. These equations arc 
given for equilibrium and frozen ROM respec- 
tivcly, with z(0) = 0, by 
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Method 2 0.20 I, - 

0.18 - Equilibrium 

0.16 
stagnation 

- 
M=IO 

sJ14 7-,=300’K - 

I.? 
to42 - 

luQ 
>O.lO - 

?I 
c 0.06 - 
$ 
-?u 0.06 - 

0.04 - 

0.02 - 

I I 
0 I.0 2.0 

7 

v 4.0 

FIG. 5. Normalized chemical reactionenergy distribu- 
tion through a laminar boundary layer at a stagnation 

point, altitude = 75 000 ft. 

[NU/(f&)“s]w = 0.753 fvz’595; (18) 

[fVu/(Re)112]w = 0.603 Nz’265. (19) 

Note that the equilibrium values for Method 2 
are less than those obtained from the frozen 
flow solutions, whereas the equilibrium results 

0 Frozen 
< Method 2 

---i = I.4 ref. (4) 
\ 

FIG. 6. Heat-transfer parameter, Nu/(Re)1f2, vs. pp 
ratio across a laminar boundary layer at a stagnation 

point, 

Ao* /H-p@ 
:> 250 OOOft 
d 200 OOOf, 
. I50 OOOfl 
0 75 oooit 

r, = 300°K 

FIG. 7. Equilibrium stagnation point heat-transfer 
rates (R = 1 ft) vs. flight velocity. 

for Method 1 yield values that are approxi- 
mately equal to the frozen flow case. The actual 
heat-transfer rates to a body of I-ft radius as 
determined from the above for equilibrium flow 
are shown in Fig. 7 as a function of flight 
velocity and altitude. The heating-rate equations 
obtained, using equations (18) and (19) are, 
respectively, 

qw = 0.753 Pr,l (Pe /Le)O+= 

(pw &-0.0g5 (du&Q:‘2 (he - h,), 

qw = O-603 Pr;l (pe &0.265 

(20) 

(pw t~eu)O.~~~ (du&Wf’2 (h, - h,). 

B. Flat plate characteristics 

(21) 

Equations (7-9) with fl = 0 and the appropri- 
ate boundary conditions yield the distributions 
of 0 and z through a laminar boundary layer on 
a flat plate immersed in the uniform flow behind 
a normal shock traveling at the selected Mach 
numbers and altitudes. 

Typical profiles of 0 and ca obtained by 
Method 2 are shown in Figs. 8 and 9 for the 
case M, = 24, Tw = 300”K, altitude = 75 OOOft 
for both equilibrium and frozen flow. Fig. 10 
shows the normalized chemical reaction energy 
and heat of formation distributions for this case, 
Trends shown here are the same as those 
obtained from the stagnation point solution. 

The heat transfer parameter Nu/(Re)112 is 
shown as a function of the pp ratio in Fig. 11 for 
both equilibrium and frozen flow with z(0) = 0. 
Again, the results for all altitudes and Mach 
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Flat pioie 
Iv=20 
Tw=3000K 

I 1 -/ 
0 I.0 2,o 3G 

Dimensionless distance, 71 

FIG. 8. Temperature distribution through a laminar 
flat plate boundary layer, Method 2, altitude L 

75 000 ft. 

1 

r 
Oxygen Oxygen+ Nittoqen 

1 -&----- ___~~~~_.. ~_,, 

Tw=3000K 

75 Oooft 

J 1 
0 2.0 Y. 

FIG. 10. Normalized chemical reaction energy and 
heat of dissociation distribution through a laminar 

flat plate boundary layer Method, 2. 

Fro. ‘9. Atom mass fraction distribution through a 
flat plate boundary layer, Method 2, altitude 

75 000 ft. 

I 
..’ / 

Frti. Il. Heat-transfer parameter, R;u/(Re)“‘. VL ;+L 
ratio across a laminar flat plate boundary layer. 
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numbers considered were correlated by a least- 
squares fit given as 

[NU/(Rf?)“Q = 0.34 zV;454 (22) 

for equilibrium flow and as 

[Nu/(Re)““]W = 0.28 Nf.235 (23) 

for frozen flow with z(0) = 0. The above 
correlation yields the following heat-transfer 
rate equations: 

qW = 0.34 Pr;l (pe pe)o”454 

( Pwpw)"'046 64?/x>"" (he - h!J (24) 

qW = 0.28 Pr;l (pe pe)o.235 

( PuJ~w)"~265 (4xY2 (he - hAJ (25) 
for equilibrium and frozen flows with z(0) = 0. 
The heat-transfer rates at x = 1 ft for equilibrium 
flow are illustrated in Fig. 12 as a function of 
flight velocity and altitude. A summary curve of 

u 75OOOft 
. 150000ft 
A 200000ft 
’ 250000ft 

/w =300’K 

lbi’ / I I I I I 1 I I 1 1 I I / 1 I_ I I 
n-4 so-” 10-z 10.’ I 

,?* kW/cm’ 

FIG. 12. Equilibrium flat plate heat-transfer rates 
(x = 1 ft) vs. flight velocity. 

both the stagnation point and flat plate heat 
transfer is shown in Fig. 13. 

C. Comparison of results with existing experi- 
mental data 

A number of heat-transfer measurements have 
been made at the stagnation point of models in 
shock tubes and tunnels simulating a portion of 
the range of flight conditions considered in this 
study [l 1, 12, 131. The experimental studies were, 
in general, not carried out under the same 

I I I ,I,, 

FIG. 13. Heat-transfer parameter, Nu/(Re)““, 
vs. pp ratio. 

velocity and pressure conditions, so that a direct 
comparison of experimental results is difficult. 
However, the experimental results available in 
the literature reveal a scatter of sufficient latitude 
to encompass the predictions of both Methods 1 
and 2 at least through Mach numbers as high as 
12 and altitudes up to 75 000 ft. 

At low velocities (< 13 000 ft/s) the data of 
[12] agree reasonably well with the Method 2 
results, but at higher velocities (13 000-26 000 
ft/s) the data of [ll] clearly favor the results of 
Method 1. 

6. CONCLUSIONS 

The heat-transfer rates, considering variable 
Lewis number and variable heat of recombina- 
tion at a stagnation point in equilibrium and 
frozen flows, may be given by 

qW = 0.753 Pr;l (pe pcLe)o’5g5 

(~w~w)-~‘~~~ (dUe/d#‘2 (he - h,) 

qW = 0.603 Pr; l( pe pe)0+-f15 

(PW t~w)O’~~~ (due/dx)f’2 (h, -- hw) 

whereas the flat plate heat-transfer rates for the 
two cases are 
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(Ill> 0.34 Pr,<, I ( pe /L<>)“.JSl 

(p,,. p,,.)(‘,“A’i (z&l.\-)’ ‘? (II,. ll,, ) 

qw ~~ 0.28 P/.,, ’ ( pi, I(r)” Z13 

( pu, /+,.)@=5 (&,i.Y)’ 2 (/lc llu J 

respectively. These results indicate that in the 
equilibrium case the external flow properties 
are the dominant influence determining heat 
transfer, as was found by previous investigators. 
In the case of completely frozen flow, however, 
the wall conditions are at least as important as 
the external flab conditions. 

Using a variable heat of formation which 
allows for a distinction between oxygen and 
nitrogen recombination. gives results that are 
physically reasonable but somewhat lower than 
the equilibrium heat-transfer rates given by Fay 
and Riddell [4] and by Scala and Baulknight [S], 
but still within the experimental data scatter of 
1111, [I21 and [13]. 

Hayes and Probstein [ 141 have summarized 
the effect of recombination of atoms on the 
heat transfer in a laminar boundary layer where 
the gas is a binary mixture of air atoms and 
molecules with Lewis number identically I. 
Their primary conclusion is that it makes little 
difference upon heat transfer. whether the atoms 
recombine in the boundary layer or at the wall, 
which implies that all air atoms transfer equal 
amounts of recombination energy. However, air 
is more realistically a quaternary mixture and the 
oxygen and nitrogen atoms transport different 
amounts of recombination energy. The definition 
used here for a variable heat of formation in 
part accounts for this multiplicity of cotnponents 
in that almost all nitrogen atoms will recombine 
before oxygen recombination commences. Con- 
sequently, the equilibrium heat-transfer rates 
are lower than those of [4]. However, the frozen 
flow heat-transfer rates are essentially the same 
as those in [4]. since atoms recombine only at 
the \+‘all. 

A particularly interesting consequence of the 
above definition of the heat of atom formation 
is the dominant effect of oxygen recombination 
occurring in the vicinity of the wall. 
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APPENDIX A 

Method of machine solution 

Evaluating equations (7--9) in terms ot‘ i.1 
binary mixture of air atoms and air molecules 
results in the following. sets of eauations: 
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Equilibrium Flow 

(Nf “)’ +f” + p [$ - (f’)“] = 0 

;; (avey + Cffl’ + z? [; (Axz’) 4 j-z’] 
e 

Frozen Flow 

(NY”)’ +ff” + B [T - (f’)2] 

;&2vz’)‘+fz’= 0 

; (CN0’)’ + CfO’ + Nt?$:2 

=o 

where primes denote differentiation with respect 
to 7. 

Solution of the equations would have been 
very straightforward except for the fact that 
certain of the initial conditions were not known 
and had to be obtained as part of the solution. 
This was accomplished by an iterative procedure 
which will be described below. 

Given the necessary tabular data and flight 
conditions, the solution began by assuming a 
set of values for the unknown initial conditions, 
f”(O), f?(O), and Z’(0). If several cases were 
being computed consecutively, the guessed values 
were the values obtained in the previous solu- 
tion. For the first case of any group, an arbitrary 
set of numbers was used which had been found 
to work satisfactorily in many cases. The equa- 
tions were then integrated by means of Milne’s 
method until a value off”(y) was obtained such 
thatf”(7) < E. 

This value for T’(T) meant that f’(7) was 
either approaching a horizontal asymptote or a 
maximum point. At this point integration was 
stopped, and the values of the functions com- 
pared with the required boundary conditions. 
If all conditions were met, it was assumed that 
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the solution had been obtained. If any boundary 
condition was not satisfied, corrections were 
made to the initial conditions and a new itera- 
tion begun. 

For the sake of simplicity, the method used to 
make corrections to the unknown initial condi- 
tions will be described only for the case of 
equilibrium flow. The extension to more than 
two functions is quite simple. 

Corrections to j-“(O) and 0’(O) are obtained 
from the equations 

%?I Af”(()) + 
af “(0) f$f A@‘(O) = 1 -f’(v) 

;$& Af "(0) $ zo; A&(O) = 1 - e(v) 

where Af”(0) and A&(O) are the desired correc- 
tions and y(y) and e’(q) are the values obtained 
using the previous approximations to the true 
values of the initial conditions. The partial 
derivatives were approximated by doing three 
initial iterations, the first one being the refer- 
ence. For the second iteration f”(0) was incre- 
mented by an amount Sf”(0) while 0’(O) re- 
mained fixed. Integration of the equations then 
resulted in new values for f’(7) and e(q) which 
differed from those of the first iteration by 
amounts 6’f(T) and Se(T), respectively. Then, 

af ‘(4 Sf ‘(7) __ = ___ 
af “(0) V”(O) 

and 

For the third iteration, ,f”(O) was reset to its 
value at the first iteration and 8’(O) incremented 
by an amount W(0). The partials with respect 
to e’(0) were then computed in the same manner. 

Validity of the solutions rests on the fact that 
all the boundary conditions are satisfied, and 
that decreasing the interval of integration does 
not change the results significantly. Uniqueness 
is indicated by the fact that different guesses at 
the unknown initial conditions always results in 
the same final solution. 
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APPENDIX R 

M Alt.i_ 7-u O?, 

10 75K 300°K 0.0928 0.4226 0.023 8.896 0.4778 0.4016 0.4288 0.5 
14 150K 600°K 0.1184 0.3298 0.237 2.371 0.4543 0.6345 04417 0.5 
20 200K 1000°K 0, I698 0.2896 0.4712 2.212 0.451 0.878 I 0.4623 0.5 
24 75K 300°K 0.03661 0.1701 0.495 2.227 0.3419 0.7105 0.3499 0.5 
24 250K 300°K 0.0552 0.1971 0.507 2.245 0.3716 09837 0.3854 O-5 
20 7.5K 300°K 0.042 0.2159 0.3275 2,360 0.2802 0.6042 0.1782 0 
10 l50K 1000°K 0.3065 0.5543 0.095 7.913 0.3936 0.4212 0.2437 0 
24 250K 300°K 0.2757 0.1971 0.5069 2.245 0.2757 0,932 0.1826 0 

I,,,, (0) ii,, 10) 

M Alt. T,, 01,’ NC 

IO 75K 300°K 0.0928 0.4226 0.023 0.2346 8.896 0.4765 0.3955 0.4278 0.5 
14 1SOK 600°K 0.1184 0.3298 0.237 0.2346 2.371 0.4510 0.5637 0,435 0.5 
20 200K 1000°K 0.1698 0.2896 0.4712 0.2346 2.212 0.448 I 0.6397 0.3368 0.5 
24 75K 300°K 0.03661 0.1701 0.495 0.2346 2.227 0.3384 0.5480 0.2754 0.5 
24 250K 300°K 0.0552 0.1971 0.507 0.2346 2.245 0.368 0.7049 0.2761 0.5 
20 75K 300°K 0.042 0.2159 0.3275 0.2346 2.360 0.285 0,499 0.1471 0 
IO l50K 1000°K 0.3065 0.5543 0.095 0.2346 7.913 0.394 0.4151 0.2402 0 
24 250K 300°K 0.2757 0.1971 0.5069 0.2346 2.245 0.2814 0.6775 0.1317 0 
24 75K 300°K 0.03661 0.1701 0.495 0.200 2.245 0.3384 0.5474 0.2754 0.5 
24 75K 300°K 0.03661 0.1701 0.495 0.170 2.245 0.3384 0.5474 0.2754 0.5 
24 75K 300°K 0.03661 0.1701 0.495 0.150 2.245 0.3384 0.5478 0.2756 0.5 

CC1 
* p,, (0) 

__~~~ 

IO 
20 
I4 
24 
20 
10 
14 
24 

2SOK 600 ‘K 0.2469 0.5547 0.0433 
2OOK 300°K 0.0509 0.1987 0.4712 
150K 1000°K 0.1973 0.3955 0.2370 
75K 300°K 0.03661 0.1701 0.495 
75K 300°K 0.042 0.2159 0.3275 

2SOK 600°K 0.2469 0.5547 0.0433 
200K IOOO"K 0.2217 0.417 0.2264 
ISOK 300°K 0.0403 0.1416 0.7385 

r,,, (0) 
-. --- 
0.5672 
0.3425 
0.4845 
0.3181 
0.2873 
0.3957 
0.3686 
0.2607 

0, (0) 

0.3229 0.3607 
0.3245 0.2519 
0.3026 0.3137 
0.3126 0.2405 
0.3167 0.2523 
0.3067 0.338 
0.2861 0.3016 
0.3025 0.2186 

z (0) Nu, y’(Rc) 6 

0 0,496 0.5 
0 0.3851 0.5 
0 0.4533 0.5 
0 0.3631 0.5 
0 0.1868 0 
0 0.2348 0 
0 0.2366 0 
0 0.1704 0 

.~ ~~~ 

t The nomenclature 75 K, etc. designates 75 000 ft. 

Resume-On ttudie I’kchange thermique a travers une couche limite laminaire dissociee en utihsant 
une definition de la chaleur de dissociation variable permettant de faire une distinction entre l’oxy- 
gene et l’azote. Les resultats indiquent que la transmission de chaleur a travers une couche limite en 
Cquilibre est und peu moins grande que celle rapportee precedemment par d’autres auteurs. De plus. 
on trouve que, pour les conditions d’ecoulement libre considenks, la recombinaison de l’oxygene 
(plutot que celle de i’azote) est le phenomene predominant dans la determination de l’echange 

thermique a travers une couche limite en Bquilibre. 
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Zusannnenfassung-Der Warmeiibergang durch eine dissoziierte laminaire Grenzschicht wurde 
untersucht unter Beniitzung veranderlicher Dissozrationswiirmen, was eine Unterscheidung zwischen 
Sauerstoff und Stickstoff ermbglichte. Die Ergebnisse deuten darauf hin, dass der Wlrmeiibergang 
durch eine Gleichgewichtsgrenzschicht hier etwas unter dem ktirzlich von anderen Forschem mit- 
geteilten liegt. Weiterhin wurde ftir den Bereich der betrachteten Fretstromverhaltnisse festgestellt, 
dass die Sauerstoffrekombination (eher als die des Stickstoffs) .fiir die Bestimmung des Wlrmeiiber- 

gangs durch eine Gleichgewichtsgrenzschicht die dominierende Rolle spielt. 

AmoTaqm-IIccnenyeTcx TerIJIoo6Merr sepes ~HCCO~HHpOBaHHbIti JIaMLlHapIIbIit norpa- 

IWIHbItiCJIOti,HCIIOJIb3yFIIIOHFITIleO IIepeMeHHOiTe~JIOTe~I4CCOIJ~a~IUI,YTOIIO3BOJIHeTIlpO- 

BOAATb pa3JWIlle Me>KAy KIWIOpO~OM I4 a30TOM. Pe3yJIbTaTbI IIOKa3bIBaIOT, YTO TeIIJIOO6MeH 

Yepe3 paBHOBeCHbIi8 IIOrpaHHYHbIti CJIOih HeCKOJIbKO MeHbIIIe, 9eM yKa3bIBaJIOCb B paHee 

OIIy6JII4KOBaHHbIXpa6oTax~pyrMX HCCJIefiOBaTWIei-4. HpOMeTOrO yCTaHOBJIeHO,YTO B paCCMa- 

TpHBaeMBaeMbIX YCJIOBIIRX CBO60~HOrO Te‘YeHMR peKOM6lIKaqMR KMCJIOpOfla (CKOpee, Yen1 

n:~oTa)~K~~eTcFIonpeAeJIRH)~YIM npoueccohf np~TennOO6Me~re~epeapa~HoBecHb1~norpaHnu- 


